Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 980
Filter
1.
Braz. j. med. biol. res ; 57: e13229, fev.2024. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1534065

ABSTRACT

Abstract The incidence of non-alcoholic fatty liver (NAFLD) remains high, and many NAFLD patients suffer from severe ischemia-reperfusion injury (IRI). Currently, no practical approach can be used to treat IRI. Puerarin plays a vital role in treating multiple diseases, such as NAFLD, stroke, diabetes, and high blood pressure. However, its role in the IRI of the fatty liver is still unclear. We aimed to explore whether puerarin could protect the fatty liver from IRI. C57BL/6J mice were fed with a high‐fat diet (HFD) followed by ischemia reperfusion injury. We showed that hepatic IRI was more severe in the fatty liver compared with the normal liver, and puerarin could significantly protect the fatty liver against IRI and alleviate oxidative stress. The PI3K-AKT signaling pathway was activated during IRI, while liver steatosis decreased the level of activation. Puerarin significantly protected the fatty liver from IRI by reactivating the PI3K-AKT signaling pathway. However, LY294002, a PI3K-AKT inhibitor, attenuated the protective effect of puerarin. In conclusion, puerarin could significantly protect the fatty liver against IRI by activating the PI3K-AKT signaling pathway.

2.
Acta cir. bras ; 39: e390224, 2024. graf
Article in English | LILACS, VETINDEX | ID: biblio-1533355

ABSTRACT

Purpose: To investigate the protective effect of breviscapine on myocardial ischemia-reperfusion injury (MIRI) in diabetes rats. Methods: Forty rats were divided into control, diabetes, MIRI of diabetes, and treatment groups. The MIRI of diabetes model was established in the latter two groups. Then, the treatment group was treated with 100 mg/kg breviscapine by intraperitoneal injection for 14 consecutive days. Results: After treatment, compared with MIRI of diabetes group, in treatment group the serum fasting blood glucose, fasting insulin, homeostasis model assessment of insulin resistance, and glycosylated hemoglobin levels decreased, the serum total cholesterol, triacylglycerol, and low-density lipoprotein cholesterol levels decreased, the serum high-density lipoprotein cholesterol level increased, the heart rate decreased, the mean arterial pressure, left ventricular ejection fraction, and fractional shortening increased, the serum cardiac troponin I, and creatine kinase-MB levels decreased, the myocardial tumor necrosis factor α and interleukin-6 levels decreased, the myocardial superoxide dismutase level increased, and the myocardial malondialdehyde level decreased (all P < 0.05). Conclusions: For treating MIRI of diabetes in rats, the breviscapine can reduce the blood glucose and lipid levels, improve the cardiac function, reduce the myocardial injury, and decrease the inflammatory response and oxidative stress, thus exerting the alleviating effect.


Subject(s)
Animals , Rats , Myocardial Reperfusion Injury , Oxidative Stress , Diabetes Mellitus , Inflammation , Ischemia
3.
World Journal of Emergency Medicine ; (4): 10-15, 2024.
Article in English | WPRIM | ID: wpr-1005314

ABSTRACT

@#BACKGROUND: Resuscitative endovascular balloon occlusion of the aorta (REBOA) can temporarily control traumatic bleeding. However, its prolonged use potentially leads to ischemia-reperfusion injury (IRI). Partial REBOA (pREBOA) can alleviate ischemic burden; however, its security and effectiveness prior to operative hemorrhage control remains unknown. Hence, we aimed to estimate the efficacy of pREBOA in a swine model of liver injury using an experimental sliding-chamber ballistic gun. METHODS: Twenty Landrace pigs were randomized into control (no aortic occlusion) (n=5), intervention with complete REBOA (cREBOA) (n=5), continuous pREBOA (C-pREBOA) (n=5), and sequential pREBOA (S-pREBOA) (n=5) groups. In the cREBOA and C-pREBOA groups, the balloon was inflated for 60 min. The hemodynamic and laboratory values were compared at various observation time points. Tissue samples immediately after animal euthanasia from the myocardium, liver, kidneys, and duodenum were collected for histological assessment using hematoxylin and eosin staining. RESULTS: Compared with the control group, the survival rate of the REBOA groups was prominently improved (all P<0.05). The total volume of blood loss was markedly lower in the cREBOA group (493.14±127.31 mL) compared with other groups (P<0.01). The pH was significantly lower at 180 min in the cREBOA and S-pREBOA groups (P<0.05). At 120 min, the S-pREBOA group showed higher alanine aminotransferase (P<0.05) but lower blood urea nitrogen compared with the cREBOA group (P<0.05). CONCLUSION: In this trauma model with liver injury, a 60-minute pREBOA resulted in improved survival rate and was effective in maintaining reliable aortic pressure, despite persistent hemorrhage. Extended tolerance time for aortic occlusion in Zone I for non-compressible torso hemorrhage was feasible with both continuous partial and sequential partial measures, and the significant improvement in the severity of acidosis and distal organ injury was observed in the sequential pREBOA.

4.
Organ Transplantation ; (6): 131-137, 2024.
Article in Chinese | WPRIM | ID: wpr-1005243

ABSTRACT

Organ preservation fluid could mitigate cold ischemia injury and maintain normal function of the grafts. At present, how to reduce a series of injury caused by cold ischemia of donor liver and improve the preservation quality of grafts are the hot and challenging spots in this field. Currently, preservation fluid in clinical practice has not achieved ideal preservation effect, especially for the protection of marginal donor organs. In the context of severe donor shortage, the key solution is still to explore the optimal preservation protocol for donor liver to prevent grafts from cold ischemia injury. In this article, the mechanism of donor liver injury during cold ischemia, the classification and evolution of donor liver preservation fluid were summarized, the development direction and challenges of donor liver preservation fluid were discussed, aiming to provide novel ideas and references for the research and development of donor liver preservation fluid.

5.
Organ Transplantation ; (6): 70-81, 2024.
Article in Chinese | WPRIM | ID: wpr-1005236

ABSTRACT

Objective To analyze the core genes of lung ischemia-reperfusion injury and construct a competitive endogenous RNA (ceRNA) network. Methods Original data of GSE145989 were downloaded from the Gene Expression Omnibus (GEO) database as the training set, and the GSE172222 and GSE9634 datasets were used as the validation sets, and the differentially-expressed genes (DEG) were identified. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Protein-protein interaction (PPI) network was constructed, and the core genes were screened, and the diagnostic values of these core genes and the immune infiltration levels of immune cells were evaluated. The ceRNA network was constructed and validated. The targeted drugs based on ceRNA network were assessed. Results A total of 179 DEG were identified, including 61 down-regulated and 118 up-regulated genes. GO analysis showed that DEGs were associated with multiple biological processes, such as cell migration, differentiation and regulation, etc. They were correlated with cell components, such as vesicle membrane, serosa and membrane raft, etc. They were also associated with multiple molecular functions, such as chemokine receptor, G protein-coupled receptor, immune receptor activity and antigen binding, etc. KEGG pathway enrichment analysis revealed that DEG were involved in tumor necrosis factor (TNF), Wnt, interleukin (IL)-17 and nuclear factor (NF)-κB signaling pathways, etc. PPI network suggested that CD8A, IL2RG, STAT1, CD3G and SYK were the core genes of lung ischemia-reperfusion injury. The ceRNA network prompted that miR-146a-3p, miR-28-5p and miR-593-3p were related to the expression level of CD3G. The miR-149-3p, miR-342-5p, miR-873-5p and miR-491-5p were correlated with the expression level of IL-2RG. The miR-194-3p, miR-512-3p, miR-377-3p and miR-590-3p were associated with the expression level of SYK. The miR-590-3p and miR-875-3p were related to the expression level of CD8A. The miR-143-5p, miR-1231, miR-590-3p and miR-875-3p were associated with the expression level of STAT1. There were 13 targeted drugs for CD3G, 4 targeted drugs for IL-2RG, 28 targeted drugs for SYK and 3 targeted drugs for lncRNA MUC2. No targeted drugs were identified for CD8A, STAT1 and other ceRNA network genes. Conclusions CD8A, IL2RG, STAT1, CD3G and SYK are the core genes of lung ischemia-reperfusion injury. The research and analysis of these core genes probably contribute to the diagnosis of lung ischemia-reperfusion injury and providing novel research ideas and therapeutic targets.

6.
Organ Transplantation ; (6): 46-54, 2024.
Article in Chinese | WPRIM | ID: wpr-1005233

ABSTRACT

Objective To investigate the role and mechanism of spliced X-box binding protein 1 (XBP1s) in the senescence of primary renal tubular epithelial cells induced by hypoxia/reoxygenation (H/R). Methods Primary renal tubular epithelial cells were divided into the normal control group (NC group), H/R group, empty adenovirus negative control group (Ad-shNC group), targeted silencing XBP1s adenovirus group (Ad-shXBP1s group), empty adenovirus+H/R treatment group (Ad-shNC+H/R group) and targeted silencing XBP1s adenovirus+H/R treatment group (Ad-shXBP1s +H/R group), respectively. The expression levels of XBP1s in the NC, H/R, Ad-shNC and Ad-shXBP1s groups were measured. The number of cells stained with β-galactosidase, the expression levels of cell aging markers including p53, p21 and γH2AX, and the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) were determined in the Ad-shNC, Ad-shNC+H/R and Ad-shXBP1s+H/R groups. Chromatin immunoprecipitation was employed to verify Sirtuin 3 (Sirt3) of XBP1s transcription regulation, and the expression levels of Sirt3 and downstream SOD2 after down-regulation of XBP1s were detected. Mitochondrial reactive oxygen species (mtROS) were detected by flow cytometry. Results Compared with the NC group, the expression level of XBP1s was up-regulated in the H/R group. Compared with the Ad-shNC group, the expression level of XBP1s was down-regulated in the Ad-shXBP1s group (both P<0.001). Compared with the Ad-shNC group, the number of cells stained with β-galactosidase was increased, the expression levels of p53, p21 and γH2AX were up-regulated, the levels of ROS, MDA and mtROS were increased, the SOD activity was decreased, the expression level of Sirt3 was down-regulated, and the ratio of Ac-SOD2/SOD2 was increased in the Ad-shNC+H/R group. Compared with the Ad-shNC+H/R group, the number of cells stained with β-galactosidase was decreased, the expression levels of p53, p21 and γH2AX were down-regulated, the levels of ROS, MDA and mtROS were decreased, the SOD activity was increased, the expression level of Sirt3 was up-regulated and the ratio of Ac-SOD2/SOD2 was decreased in the Ad-shXBP1s+H/R group (all P<0.05). Conclusions Down-regulation of XBP1s may ameliorate the senescence of primary renal tubular epithelial cells induced by H/R, which probably plays a role through the Sirt3/SOD2/mtROS signaling pathway.

7.
Organ Transplantation ; (6): 40-45, 2024.
Article in Chinese | WPRIM | ID: wpr-1005232

ABSTRACT

Ischemia-reperfusion injury (IRI) is an extremely complicated pathophysiological process, which may occur during the process of myocardial infarction, stroke, organ transplantation and temporary interruption of blood flow during surgery, etc. As key molecules of immune system, macrophages play a vital role in the pathogenesis of IRI. M1 macrophages are pro-inflammatory cells and participate in the elimination of pathogens. M2 macrophages exert anti-inflammatory effect and participate in tissue repair and remodeling and extracellular matrix remodeling. The balance between macrophage phenotypes is of significance for the outcome and treatment of IRI. This article reviewed the role of macrophages in IRI, including the balance between M1/M2 macrophage phenotype, the mechanism of infiltration and recruitment into different ischemic tissues. In addition, the potential therapeutic strategies of targeting macrophages during IRI were also discussed, aiming to provide reference for alleviating IRI and promoting tissue repair.

8.
China Pharmacy ; (12): 124-128, 2024.
Article in Chinese | WPRIM | ID: wpr-1005226

ABSTRACT

Myocardial ischemia-reperfusion injury (MIRI) is a serious complication of revascularization in patients with myocardial infarction. The nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway plays an important role in the pathological process of MIRI. Currently,research has found that traditional Chinese medicine has a good effect on myocardial injury caused by ischemia-reperfusion. Based on the Nrf2/HO-1 signaling pathway,this article summarizes the action mechanism of traditional Chinese medicine formulas and monomers in intervening with MIRI. It is found that traditional Chinese medicine formulas (Yixin formula,Wenyang tongmai formula,Dingxin formula Ⅰ),monomers such as terpenoids (ginkgolides, astragaloside Ⅳ,ginsenosides),phenols (brazilin,hematoxylin A,resveratrol) and quinones (aloe,emodin) can alleviate MIRI by activating the Nrf2/HO-1 signaling pathway,inhibiting oxidative stress and inflammatory reactions,etc.

9.
Rev. chil. cardiol ; 42(3)dic. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1529986

ABSTRACT

El precondicionamiento isquémico remoto es una manera eficaz de disminuir el daño por isquemia y reperfusión en el corazón y otros órganos como cerebro o riñón, en modelos experimentales. Este consiste en realizar entre 3 y 5 ciclos de 5 minutos de isquemia seguidos del mismo tiempo de reperfusión, en un tejido alejado del que se quiere proteger, normalmente una extremidad. Estudios preclínicos en animales indican que la isquemia precondicionante inicia señales nerviosas y humorales en el tejido isquémico remoto, que en el corazón activan mecanismos de protección. La señal nerviosa se origina en fibras sensoriales que a nivel cerebral producen una activación del sistema parasimpático. El nervio vago activa ganglios cardíacos intrínsecos del corazón lo que induce protección. Además, desde el tejido isquémico se liberan a la circulación diferentes mediadores que viajan en forma libre o en vesículas lipídicas (exosomas) que inician vías de señalización protectoras en el corazón. A pesar del éxito del precondicionamiento isquémico remoto en animales de experimentación, su aplicación en seres humanos no ha tenido resultados claros. Esta discrepancia puede deberse a una diversidad de factores tales como la edad, la existencia de otras patologías, uso de fármacos u otros tratamientos que afectan la respuesta de los pacientes. Se requiere un mayor conocimiento de las bases moleculares de este mecanismo de protección para que su aplicación en clínica sea exitosa.


In experimental models, remote ischemic preconditioning effectively decreases ischemia reperfusion injury to the heart and other organs such as the brain or kidney. It consists of 3 to 5 cycles of 5 minutes of ischemia followed by 5 minutes of reperfusion, in a remote tissue, usually a limb. Preclinical studies in animals indicate that preconditioning ischemia initiates neural and humoral signals in the remote ischemic tissue, which activate protective mechanisms in the heart. The nervous signal originates in sensory fibers that activate the parasympathetic system in the brain. The vagus nerve activates the intrinsic cardiac ganglia of the heart, leading to protection from ischemic injury. Furthermore, mediators are released from the ischemic tissue into the circulation that travels freely or in lipid vesicles (exosomes) to the heart where they initiate protective signaling pathways. Despite the success of remote ischemic preconditioning in experimental animals, its application in humans has not produced clear results. This discrepancy may be due to a variety of factors such as age, the existence of other pathologic processes, or the use of drugs or other treatments that affect the patient´s response. An increased knowledge of the molecular bases of this protective mechanism is required for its clinical application to be successful.

10.
Rev. nefrol. diál. traspl ; 43(1): 2-2, mar. 2023.
Article in English | LILACS-Express | LILACS | ID: biblio-1515447

ABSTRACT

ABSTRACT Introduction: Renal ischemia (I) could develop due to decreased or ceased blood flow to the kidney in some clinical conditions such as shock, sepsis, and kidney transplantation. The re-supply of blood to the kidney is called reperfusion (R). Ischemia and reperfusion periods can cause severe kidney damage. Objectives: When we examined the I/R molecular progression, antioxidant molecules such as vitamin A seem promising treatment agents. This study aimed to investigate the effects of vitamin A on renal I/R injury. Material and Methods: In the study, 40 Sprague-Dawley male rats were divided into five groups (n=8): the control group, only I/R, I/R+1000, I/R+3000, and I/R+9000 IU/kg of Vitamin A groups. Vitamin A was administrated to each group for seven days via oral gavage. Blood and kidney tissue samples were collected at the end of the experiment. We took blood samples for Superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), blood urea nitrogen (BUN), and creatinine (Cr) levels, and determined their values. The tissue samples were stained with hematoxylin/eosin to examine the renal changes histopathologically and stereologically under a light microscope. Results: Histopathological changes caused by I/R were decreased with vitamin A administration in a dose-dependent manner (p<0.05). Vitamin A administration decreased MDA levels and increased SOD and CAT activities (p<0.05). The most effective dose among treatment groups was 9000 IU/kg. There was no significant difference between the controls and all other groups regarding BUN and Cr concentrations. Conclusions: Consequently, administration of vitamin A after renal I/R reduced the histological damage and ameliorated the antioxidant state. These results showed that vitamin A could be a promising agent in treating I/R-induced acute kidney injury.


RESUMEN Introducción: La isquemia renal (I) puede desarrollarse debido a la disminución o interrupción del flujo sanguíneo al riñón en algunas condiciones clínicas como shock, sepsis y trasplante renal. El reabastecimiento de sangre al riñón se denomina reperfusión (R). Tanto la isquemia como los períodos de reperfusión pueden causar graves daños renales. Objetivos: Cuando examinamos la progresión molecular I/R, las moléculas antioxidantes como la vitamina A parecen agentes de tratamiento prometedores. El objetivo de este estudio fue investigar los efectos de la vitamina A sobre la lesión renal I/R. Material y Métodos: En el estudio, 40 ratas macho Sprague-Dawley se dividieron en 5 grupos (n=8) como: control, solo I/R, I/R+1000, I/R+3000 e I/R+9000 UI/kg de la Vitamina A. La vitamina A se administró a cada grupo durante 7 días por vía oral forzada. Al final del experimento se recolectaron muestras de sangre y tejido del riñón. A partir de muestras de sangre se determinaron los niveles de superóxido dismutasa (SOD), malondialdehído (MDA), catalasa (CAT), nitrógeno ureico en sangre (BUN) y creatinina (Cr). Las muestras de tejido se tiñeron con hematoxilina/eosina y los cambios en la histología renal se examinaron histopatológicamente y estereológicamente al microscopio de luz. Resultados: Los cambios histopatológicos causados por I/R disminuyeron con la administración de la vitamina A de manera dependiente de la dosis (p<0,05). La administración de la vitamina A disminuyó los niveles de MDA, aumentó las actividades de SOD y CAT (p<0,05). La dosis más eficaz entre los grupos del tratamiento fue de 9000 UI/kg. No hubo una diferencia significativa entre el grupo control y todos los demás grupos con respecto a las concentraciones de BUN y Cr. Conclusiones: Consiguientemente, la administración de la vitamina A, después de I/R renal, redujo el daño histológico y mejoró el estado antioxidante. Estos resultados mostraron que la vitamina A puede ser un agente promisorio en el tratamiento de la lesión renal aguda (LRA) inducida por I/R.

11.
Organ Transplantation ; (6): 736-744, 2023.
Article in Chinese | WPRIM | ID: wpr-987126

ABSTRACT

Prevention and treatment of complications after liver transplantation play a significant role in maintaining liver graft function and improving clinical prognosis of the recipients. Neutrophil extracellular trap (NET) are fibrous net-like structures composed of DNA as the skeleton and histones and granular proteins released by activated neutrophils. Studies have shown that the activation of neutrophils and the release of NET in donor liver after liver transplantation are involved in the incidence of multiple liver transplantation-related complications including ischemia-reperfusion injury, acute rejection, acute liver failure and recurrence of hepatocellular carcinoma, etc. In this article, the effect of NET on the complications after liver transplantation was mainly assessed, and research progress on NET as a potential target for the prevention and treatment of complications after liver transplantation was reviewed, aiming to provide reference for the prevention and treatment of complications after liver transplantation, enhance clinical efficacy of liver transplantation and improve clinical prognosis of the recipients.

12.
Organ Transplantation ; (6): 730-735, 2023.
Article in Chinese | WPRIM | ID: wpr-987125

ABSTRACT

Human leukocyte antigen (HLA) is a product encoded by HLA gene complex, which is located on the short arm of chromosome 6 and is the main target of alloimmunity. However, positive HLA antibody is not responsible for all kinds of rejections in kidney transplantation. Non-HLA antibody is the product of donor gene expression in allogeneic kidney transplantation. Intraoperative ischemia-reperfusion injury, the interaction between alloimmunity and autoimmunity and the mediation of extracellular vesicles may trigger immune system response and promote the production of non-HLA antibody. Multiple studies have demonstrated that non-HLA antibody is an important factor of inducing rejection and affecting the outcomes of kidney transplantation. Consequently, the types and formation mechanism of non-HLA antibody in kidney transplantation were reviewed, and research progress on kidney transplantation rejection associated with non-HLA antibody was summarized, aiming to provide reference for in-depth study of kidney transplantation rejection associated with non-HLA antibody.

13.
Organ Transplantation ; (6): 723-729, 2023.
Article in Chinese | WPRIM | ID: wpr-987124

ABSTRACT

Ischemia-reperfusion injury, rejection, nephrotoxicity caused by calcineurin inhibitors and other factors cause excessive accumulation of renal extracellular matrix after kidney transplantation, which gradually induce renal fibrosis and eventually lead to renal failure. In recent years, the mechanism of macrophages in renal allograft fibrosis has gradually captivated widespread attention. Studies have shown that some drugs like mammalian target of rapamycin inhibitors may mitigate renal allograft fibrosis through the macrophage. In this article, the main pathogenesis and pathophysiological mechanism of renal allograft fibrosis, the role of different macrophages in the progression of renal allograft fibrosis, the infiltration of peripherally-recruited macrophages and renal resident macrophages into renal injury areas, the induction of myofibroblasts by macrophages and potential treatment regimens of macrophage-associated renal allograft fibrosis were reviewed, aiming to provide reference for investigating the role of macrophages in renal allograft fibrosis.

14.
Organ Transplantation ; (6): 662-668, 2023.
Article in Chinese | WPRIM | ID: wpr-987116

ABSTRACT

Ferroptosis is a newly-emerged pattern of programmed cell death discovered in recent years, which is defined as iron-dependent programmed necrosis mediated by lipid peroxidation damage. As a conservative procedure, ferroptosis plays a vital role in the development and diseases of multiple organisms including plants and animals. Since ferroptosis was first reported in 2012, growing interests have been diverted to the process of ferroptosis and its role in disease treatment. Ischemia-reperfusion injury is a common pathological process during organ transplantation, and ferroptosis is considered as one of the main patterns inducing ischemia-reperfusion injury. Consequently, the definition, regulatory mechanism and the mechanisms of ferroptosis in ischemia-reperfusion injury after kidney, liver, heart and lung transplantations were reviewed, aiming to provide theoretical basis for the prevention and treatment of ischemia-reperfusion injury in organ transplantation.

15.
Organ Transplantation ; (6): 656-661, 2023.
Article in Chinese | WPRIM | ID: wpr-987115

ABSTRACT

Renal ischemia-reperfusion injury (RIRI) is the main cause of acute kidney injury (AKI), which commonly occurs in surgery, severe trauma, shock and drug-induced kidney injury. At present, effective treatment for RIRI is still lacking. Oxidative stress is the major pathological injury mechanism of RIRI. Nuclear factor E2-related factor 2 (Nrf2) is the key transcription factor of anti-oxidative stress response, which may activate various cytoprotective genes related to redox and detoxification. Recent studies have shown that Nrf2 may play a protective role in the protection and treatment of RIRI by regulating oxidative stress, inflammation, cell apoptosis and autophagy, etc. Consequently, the structure and biological function of Nrf2, related signaling pathways, its role in the incidence and development of RIRI and potential mechanism were reviewed in this article, aiming to provide novel ideas for the prevention and treatment of RIRI.

16.
Organ Transplantation ; (6): 643-648, 2023.
Article in Chinese | WPRIM | ID: wpr-987113

ABSTRACT

Kidney transplantation is the optimal treatment for patients with end-stage renal disease, whereas long-term survival of renal allografts remains a challenging issue. Renal ischemia-reperfusion injury (IRI) and rejection of renal allografts are considered as important influencing factors of long-term survival of renal allografts, which are regulated by innate and adaptive immune cells. Macrophages are one type of innate immune cells that could assist initiating adaptive immunity and are divided into M1, M2 and regulatory macrophages. Previous studies have revealed that M1 macrophages may aggravate renal IRI and acute T cell-mediated rejection (TCMR). However, M2 macrophages may mitigate renal IRI and acute TCMR, whereas it is positively correlated with antibody-mediated rejection (AMR). Regulatory macrophages are a special subgroup of macrophages, which may induce immune tolerance in organ transplantation and have promising clinical application prospects and basic scientific research value. In this article, the relationship among macrophage typing, macrophages and renal IRI, rejection of renal allografts, regulatory macrophages and immune tolerance was reviewed, and the potential mechanism was analyzed, aiming to induce changes in macrophage subtypes or eliminate specific subtypes of macrophages, thereby improving clinical prognosis of the recipients and long-term survival of renal allografts.

17.
Journal of Southern Medical University ; (12): 1194-1203, 2023.
Article in Chinese | WPRIM | ID: wpr-987036

ABSTRACT

OBJECTIVE@#To improve the classical 4-vessel occlusion (4VO) model established by Pulsinelli and Brierley.@*METHODS@#Thirty-two male SD rats were randomized into sham operation group, I4VO-Con10 group, I4VO-Int10 group and I4VO-Int15 group. The sham surgery group underwent exposure of the bilateral vertebral arteries and carotid arteries without occlusion to block blood flow. The I4VO-Con10 group experienced continuous ischemia by occluding the bilateral vertebral arteries and carotid arteries for 10 minutes followed by reperfusion for 24 hours. The I4VO-Int10 and I4VO-Int15 groups were subjected to intermittent ischemia. The I4VO- Int10 group underwent 5 minutes of ischemia, followed by 5 minutes of reperfusion and another 5 minutes of ischemia, and then reperfusion for 24 hours. The I4VO-Int15 group experienced 5 minutes of ischemia followed by two cycles of 5 minutes of reperfusion and 5 minutes of ischemia, and then reperfusion for 24 hours. The regional cerebral blood flow (rCBF) was monitored with laser Doppler scanning, and survival of the rats was observed. HE staining was used to observe hippocampal pathologies to determine the optimal method for modeling. Another 48 rats were randomized into 6 groups, including a sham operation group and 5 model groups established using the optimal method. The 5 I4VO model groups were further divided based on the reperfusion time points (1, 3, 7, 14, and 28 days) into I4VO-D1, I4VO-D3, I4VO-D7, I4VO- D14, and I4VO- D28 groups. Body weight changes and survival of the rats were recorded. HE staining was used to observe morphological changes in the hippocampal, retinal and optic tract tissues. The Y-maze test and light/dark box test were used to evaluate cognitive and visual functions of the rats in I4VO-D28 group.@*RESULTS@#Occlusion for 5 min for 3 times at the interval of 5 min was the optimal method for 4VO modeling. In the latter 48 rats, the body weight was significantly lower than that of the sham-operated rats at 1, 3, 7, 14 and 28 days after modeling without significant difference in survival rate among the groups. The rats with intermittent vessel occlusion exhibited progressive deterioration of hippocampal neuronal injury and neuronal loss. Cognitive impairment was observed in the rats in I4VO-D28 group, but no obvious ischemic injury of the retina or the optic tract was detected.@*CONCLUSION@#The improved 4VO model can successfully mimic the main pathological processes of global cerebral ischemia-reperfusion injury without causing visual impairment in rats.


Subject(s)
Rats , Male , Animals , Rats, Sprague-Dawley , Brain Ischemia , Cerebral Infarction , Reperfusion Injury , Body Weight
18.
Chinese Journal of Hepatology ; (12): 594-600, 2023.
Article in Chinese | WPRIM | ID: wpr-986176

ABSTRACT

Objective: To investigate the role of Maresin1 (MaR1) in hepatic ischemia-reperfusion injury (HIRI). Methods: The HIRI model was established and randomly divided into a sham operation group (Sham group), an ischemia-reperfusion group (IR group), and a MaR1 ischemia-reperfusion group (MaR1+IR group). MaR1 80ng was intravenously injected into each mouse's tail veins 0.5h before anesthesia. The left and middle hepatic lobe arteries and portal veins were opened and clamped. The blood supply was restored after 1h of ischemia. After 6h of reperfusion, the mice were sacrificed to collect blood and liver tissue samples. The Sham's group abdominal wall was only opened and closed. RAW267.4 macrophages were administered with MaR1 50ng/ml 0.5h before hypoxia, followed by hypoxia for 8h and reoxygenation for 2h, and were divided into the control group, the hypoxia-reoxygenation group (HR group), the MaR1 hypoxia-reoxygenation group (MaR1 + HR group), the Z-DEVD-FMK hypoxia-reoxygenation group (HR+Z group), the MaR1 + Z-DEVD-FMK hypoxia-reoxygenation group (MaR1 + HR + Z group), and the Con group without any treatment. Cells and the supernatant above them were collected. One-way analysis of variance was used for inter-group comparisons, and the LSD-t test was used for pairwise comparisons. Results: Compared with the Sham group, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin (IL)-1β, and IL-18 in the IR group were significantly higher (P < 0.05), with remarkable pathological changes, while the level in the MaR1 + IR group was lower than before (P < 0.05), and the pathological changes were alleviated. Compared with the Con group, the HR group had higher levels of IL-1β and IL-18 (P < 0.05), while the MaR1 + HR group had lower levels of IL-1β and IL-18 (P < 0.05). Western blot showed that the expressions of caspase-3, GSDME, and GSDME-N were significantly higher in the HR group and IR group than in the other groups; however, the expression was lower following MaR1 pretreatment. The Z-DEVD-FMK exploration mechanism was inhibited by the expression of caspase-3 in HIRI when using MaR1. Compared with the HR group, the IL-1β and IL-18 levels and the expressions of caspase-3, GSDME, and GSDME-N in the HR + Z group were decreased (P < 0.05), while the expression of nuclear factor κB was increased, but following MaR1 pretreatment, nuclear factor κB was decreased. There was no significant difference in the results between the MaR1 + H/R group and the MaR1 + H/R + Z group (P > 0.05). Conclusion: MaR1 alleviates HIRI by inhibiting NF-κB activation and caspase-3/GSDME-mediated inflammatory responses.


Subject(s)
Mice , Animals , NF-kappa B/metabolism , Interleukin-18/metabolism , Caspase 3/metabolism , Liver/pathology , Signal Transduction , Reperfusion Injury/metabolism
19.
Chinese Journal of Biologicals ; (12): 166-171, 2023.
Article in Chinese | WPRIM | ID: wpr-965869

ABSTRACT

@#Objective To investigate the effect of caloric restriction(CR)on myocardial ischemia/reperfusion injury(MI/RI)in mice and its mechanism.Methods C57 mice were randomly divided into normal diet group(AL group,free feeding)and CR group(diet decreased by 10% every 2 weeks)for 8 weeks and monitored for weight changes.Each group was divided into sham operation group and MI/RI group,total 4 groups,AL + Sham group,AL + I/R group,CR + Sham group and CR + I/R group).The left anterior descending coronary artery was ligated for 30 minutes and then reperfused for 24 hours in mice of MI/RI group and mice in Sham group were only threaded but not ligated.The mice were determined for myocardial ischemia and infarct size by Evans blue/TTC staining,observed for the pathology of myocardium by HE staining,determined for the activities of lactate dehydrogenase(LDH),superoxide dismutase(SOD)and the contents of creatine kinase-MB(CK-MB)and malondialdehvde(MDA)in myocardium by the corresponding kits,determined for serum levels of IL-1β and IL-18 by ELISA and detected for the expression of pyroptosis-associated proteins in myocardium by Western blot.Results After 8weeks,the weights of mice in CR group[(24.54 ± 0.41)g]were significantly lower than those in AL group[(31.46 ±0.25)g](t = 14.34,P<0.05).Compared with those in AL + I/R group,the area of myocardial ischemia in CR + I/R group showed no significant difference(t = 0.783 0,P>0.05),while the area of myocardial infarction decreased significantly(t = 7.250,P<0.01);The myocardial arrangement was relatively neat,and the degree of pathological changes was obviously reduced;LDH activity,CK-MB and MDA contents decreased significantly(t = 4.331,2.875 and 5.343 respectively,each P<0.05),while SOD activity increased significantly(t = 4.211,P<0.05);Serum levels of IL-1β and IL-18 decreased significantly(t = 3.375 and 4.266 respectively,each P<0.05);The expression levels of nod-like receptor protein 3(NLRP3),gasdermin D(GSDMD),apoptosis-associated speckle-like protein(ASC)and caspase-1 significantly decreased(t = 3.412,3.420,3.480 and 2.585 respectively,each P<0.05).Conclusion CR alleviated MI/RI in mice,and its mechanism was related to the inhibition of cardiac pyroptosis.

20.
Organ Transplantation ; (6): 300-2023.
Article in Chinese | WPRIM | ID: wpr-965056

ABSTRACT

Ischemia-reperfusion injury after lung transplantation is the main cause of primary graft dysfunction, which will subsequently reduce the function of lung allograft and lower the overall survival rate of lung transplant recipients. As a physiological regulatory molecule, hydrogen molecule has the functions of anti-inflammation, easing oxidative stress, alleviating direct cell injury and mitigating epithelial edema. Recent studies have demonstrated that hydrogen molecule and its products (hydrogen and hydrogen-rich solution) could significantly mitigate ischemia-reperfusion injury and postoperative complications after lung transplantation. In this article, the protective effect and exact mechanism of hydrogen molecule and its products in lung transplantation were reviewed, aiming to provide theoretical basis for the application of hydrogen molecule and its products as a novel treatment for lung transplantation-related complications, enhance the overall prognosis and improve the quality of life of lung transplant recipients

SELECTION OF CITATIONS
SEARCH DETAIL